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Abstract—The present investigation deals with the steady-state natural convective flow inside a two-
dimensional square loop. Opposite legs of the loop are held at constant but different temperatures and
therefore, due to the presence of gravity, fluid motion ensues; viscous effects resist the motion and a steady-
state flow is reached. The geometry of the loop is fixed but several temperature differences have been
considered. Also, the effect of the tilt angle on the flow patterns has been analyzed. Local recirculating
motions are the dominant features of the flow when the upper walls are at higher temperature than the
lower ones. In contrast, a single global cell appears when the loop is tilted. Double solutions have been
found for tilt angles close to zero (high temperature at the bottom walls) ; the size of the tilt angle interval
where double solutions exist has been determined as a function of the Rayleigh number. One-dimensional
models have predicted multiple steady-state solutions in systems similar to the one studied here; in the
present paper, the existence of muitiple solutions in a two-dimensional model has been demonstrated.

1. INTRODUCTION

NATURAL CONVECTIVE loops have been the subject of
study of numerous investigations both from the basic
and applied science viewpoints. A review which
emphasizes the heat transfer properties of these sys-
tems and describes their various applications has been
published by Mertol and Greif [1]. Although the pic-
ture of the qualitative behavior of the flow in such
systems has been slowly emerging, the full description
is far from being available at present. One of the
pioneering studies on the subject that unraveled
the complexity of the phenomenon is the work of
Creveling et al. {2], who used a thin toroidal loop
of tubing filled with water to observe its dynamic
behavior. The lower half of the loop was electrically
heated and the wall temperature of the upper half
was maintained at a constant value. They observed
flows with constant velocity circulating clockwise or
counter-clockwise for the same external conditions;
using higher heating rates, they found flows featuring
aperiodic oscillations.

One-dimensional theoretical models presently
available (see for instance ref. [3], [4] or [5]), identify
the constant velocity flows with stable critical points
in the phase space of a dynamic system describing
the flow. Oscillations appear when the critical points
become unstable. Most theoretical models are one-
dimensional and some physical effects are incor-
porated through empirical expressions. In particular,
viscous effects are taken into account by assuming the
existence of a sink linearly proportional to the velocity
in the momentum balance equation. These theoretical

interpretations have succeeded in describing some of
the qualitative features of the phenomenon, but it is
not clear to what extent the results depend on the
particular choice of the empirical information incor-
porated which is, in some instances, a crude model
of reality. Also, no quantitative information can be
obtained from the one-dimensional models for exper-
imental verification due to the empirical information
involved. By definition, no two- or three-dimensional
effects can be studied and consequently some
characteristics of the flow are not modeled. This omis-
sion is not expected to be very important when the
characteristic length of the loop is large compared
with the cross-section of the tubing forming the loop.
However, in *fat’ loops, two- or three-dimensional
effects can be of prime importance. Two-dimensional
numerical models have been used to study the flow in
a toroidal thermosyphon [6, 7]; no empirical infor-
mation was required in order to account for the vis-
cous resistance or the heat transfer at the walls, as the
friction factor and the Nusselt number were obtained
as part of the solution. The theoretical mass flow rate
obtained as a function of the heat input with the two-
dimensional model was compared favorably in the
jaminar steady-state regime with the experimental
results of ref. [2}. A three-dimensional numerical
model for a toroidal loop was proposed in ref. {8];
flow reversals and secondary flows were reported.
These features were observed experimentally by
Damerell and Schoenhals [9] but no formal com-
parison of theoretical and experimental results is
available as yet. Moreover, some general charac-
teristics of the flow still remain to be clarified. For
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NOMENCLATURE

d  dimensional duct width Greek symbols
g  gravitational acceleration a thermal diffusivity
H length of the outer wall of the loop f  thermal expansion coefficient
Nu Nusselt number y  tilt angle
p  dimensionless pressure, pv’p’/H? &  non-dimensional duct width, d/H
Pr  Prandtl number, v/ v kinematic viscosity
Ra Rayleigh number, gBATd>/va ¥ dimensionless stream function, ¥'/v,
T dimensionless temperature,

(T'-TH(Tu~Te) Subscripts
u#  dimensionless velocity in the 0  reference value

x-direction, u'H/v C  cold temperature
v  dimensionless velocity in the H hot temperature

y-direction, v'H/v M maximum value
x  dimensionless spatial coordinate, m minimum value.

x{H
y  dimensionless spatial coordinate,
YIH.

Superscript
dimensional variables.

instance, it is well known from one-dimensional
models that the system displays multiple solutions {10,
11]. Also, aperiodic oscillations in loops have been
analyzed with one-dimensional models in the context
of dynamical systems theory and their structures in
the phase-space have been associated with strange
attractors. A general multi-dimensional theory
addressing these points where no empirical infor-
mation is involved has not been presented to date.

In this paper we analyze the steady-state flow in a
square two-dimensional thermosyphon with particu-
lar emphasis on the existence of muiltiple solutions in
order to generalize the steady-state, one-dimensional
theory.

2. MATHEMATICAL MODEL

Consider a two-dimensional square duct filled with
a fluid, and tilted at an angle y with respect to the
horizontal as shown in Fig. 1. The wall temperatures
of two opposite legs are held at constant but different
temperatures 7¢ and Ty while the other two legs are
thermally insulated. The length of the external wall of
the legs is denoted by H and the duct width by d. The
fluid moves inside the loop due to the buoyancy force
generated by the density gradients. The working fluid
is Newtonian and incompressible ; viscous dissipation
is neglected in the energy equation and it is assumed
that the Boussinesq approximation is applicable.

Under steady-state conditions and referred to the
tilted axes, the governing equations written in terms
of the non-dimensional variables defined in the
nomenclature are:

mass balance

u v

5}+é}=0;

momentum balance

x-direction

8u+ é‘_- ,a£.+§.z.£+_a_2_u Ra Tsi
“T'HT T Tae T w R Y
y-direction

Eg.'. i‘:g _32 @4.9_2}.’. Ra Tcosy:
Yox Ty dy  oxi dy? 8 pr L&

energy balance

LT o1 {a=r a*r}

FPAAA My =) F Pl )

where u and v are the velocities in the x- and y-
directions respectively, p is the pressure and T the
temperature. The non-dimensional parameters that
govern the flow are the Rayleigh number Ra, the
Prandtl number Pr, the non-dimensional gap § and
the tilt angle 7.

The boundary conditions are:

u=v=0 atthe solid boundaries;

T=1 for 0<x<g], y=0

and d<xK1-6, y=4;

T=0 for 0<x<1, y=1
and d€x<<1-4, y=1-4;

§=0 for 0<y<|, Xx =)

d€y<gl-94, x=§

0y, x =1

and d<y<1-4, x=1-6
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Fic. 1. The two-dimensional square thermosyphon.

For future reference, we shall define the local Nusselt
number as

d or oT
MO T %

which is obviously a function of the position. Due to
the geometry of the problem, four Nusselt numbers
can be defined, one at each wall at constant tem-
perature.

The numerical solution of the system was obtained
using a method similar to the SIMPLE algorithm
developed by Patankar and Spalding [12], which is
embodied in the PHOENICS code of Spalding [13].
The system of equations is solved using a primitive,
dimensional-variables formulation. The non-dimen-
sional formulation adopted here is favored in order
to simplify the generalization of results.

A uniform grid with 30 x 30 contro! volumes in the
x- and y-directions was used to obtain all the results
presented in this paper. The central volumes of the
square are blocked; a solution is considered to be
correct when it has converged and is grid independent.
The convergence is attained when the overall sum
of the residuals in the mass, momentum and energy
equations is less than 0.1% of the total corresponding
quantity contained in the integration domain, and the
heat balance due to sources and sinks, including the
boundaries, is better than 1%. The grid-independent
solution is established by comparing the velocity and
temperature fields for two converged solutions
obtained with different grid spacing. It must be
stressed that different grid sizes may require a different

number of sweeps to converge. This is also true for
different tilt angles. A grid-independence study was
carried out and the results obtained with an equally-
spaced 60 x 60 volume grid were found to be in quali-
tative agreement with those presented here; small
quantitative differences (never larger than 15%) were
found. Due to the much longer time required to run
the program, it was decided to use the 30 x 30 grid.
The number of sweeps and the CPU time required to
find the solution in an HP-9000 series 500 computer
with a UNIX 5.05 operative system are given in
Table 1.

3. RESULTS

3.1. General features

Results were obtained for tilt angles ranging from
—180° to 180° and from Ra = 10° to 8 x 103, The
Prandtl number was fixed at Pr = 5.5 and the gap
width é was equal to 0.2 in all cases.

The stream function and temperature fields for
Ra=4x10%and y = 0°, 90° and 180° are shown in

Table 1. Numerical data for solutions using an HP-9000
series 500 computer

Tilt angle Number of Processing
b4 sweeps time (s)
0° 200 1964
90° 60 632
180° 420 4696
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Figs. 2-4. For y = 0° (Fig. 2(a)) the fluid moves around
the loop in a counter-clockwise direction except for
two small recirculating regions near the lower-left and
upper-right corners where the fluid moves in a clock-
wise direction. The global cell modifies dramatically
the temperature field inside the loop from that
obtained in the pure conductive case; the isotherms
are swept away by the motion of the fluid (Fig. 2(b)).

E. Ramos et al.

The fluid inside the vertical, thermaily insulated iegs is
almost isothermal while strong temperature gradients
are present in the sections corresponding to the con:
stant wall temperature legs; the steepest gradient is
located at the horizontal, lower-left and upper-right

corners where the fluid enters the hot- and cold-wall

temperature regions respectively. The origin of the
recirculation regions is in fact due to geometrical
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F16. 2. (a) Stream function and (b) temperature fields for Ra = 4x 10°and y = 0~: (W, = —0.19, ¥, = 6.5.
{¢) Pressure field and (d) center-line pressure for Ra = 4 x 10° and 5 0°.
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FIG. 2—continued.

effects ; the fluid tends to remain almost stagnant near
the corners, and it is there that horizontal temperature
gradients are generated due to the global motion.
Therefore, adequate conditions are given locally to
form convective cells. Notice, however, that in the
lower-right and upper-left corners the temperature
gradients tend to generate cells of fluid rotating in the
counter-clockwise direction; this motion is opposed
by the global cell motion which is far stronger. In
contrast, the global cell motion tends to reinforce the
local motion in the lower-left and upper-right corners.

The largest local recirculation region is formed in
the lower-left corner where the generated horizontal
temperature gradients are greatest. The. pressure field
and the pressure along the center-line of the duct is
shown in Figs. 2(c) and (d), respectively. The reference
pressure p = 0 is taken at the uppermost left-hand side
corner, with the overall pressure gradient generating a
counter-clockwise motion. The flow in the 7 = 90°
case, shown in Fig. 3(a), is similar to the one just
described, since a single global cell of fluid circulating
in the counter-clockwise direction is formed. The iso-
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FIG. 3. (a) Stream function and (b) temperature fields for Ra = 4 x 10° and y = 90°; ¥, = 0.0, ¥y = 3.5.

therms also display similar features, but in the present
case large temperature gradients are formed in the
vertical, constant wall temperature legs, while the flow
in the horizontal legs is nearly isothermal. This tem-
perature field configuration does not favor the gen-

eration of local cells since only small horizontal tem-
perature gradients are formed at the lower-left and
upper-right corners. The stream function and tem-
perature fields for y = 180° are shown in Fig. 4. The
fluid remains practically motionless in the straight
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FIG. 4. () Stream function and (b) temperature fields for Ra = 4x 10° and y = 180°; ¥, = —0.14,
¥, =0.14.

parts of the loop, but four local convection cells are
formed near the corners. The temperature field is very
similar to that of pure conduction, convection playing
only a minor role except near the inner corners where
the flow attains its maximum velocity. Two cells circu-
late clockwise while the other two circulate in the

T 335k

opposite direction. In the upper horizontal leg, the
fluid ascends near the center where the hottest region
of the loop is located and descends near the corners.
This pattern is reversed in the lower horizontal leg
where the coldest region is located near its center.
Heat is transferred from the hot boundaries of the
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loop to the cold ones purely by conduction. The pres-
ence of the cells can easily be explained since, locally,
the external heating is not uniform and therefore hori-
zontal temperature gradients are present which trigger
the motion. The local motions found in this case are
similar to the recirculating flows observed in the y = 0°
case in the sense that they are driven by local non-
homogeneous heating. In the present case, however,
the global motion of the fluid does not influence the
formation of recirculating patterns as these appear
when the global circulation of the fluid is absent.
The transition from a single global cell to multiple

E. RaMos er al.

local cells as the tilt angle goes from 90° to 180° for
Ra = 4 x10% is shown in Fig. 5 (the stream flow lines
for y = 90° and 180° are shown in Figs. 3(a) and 4(a),
respectively). The pattern changes are smooth. At
y = 120°, the stagnant regions at the upper- and lower-
most corners grow and the streamlines in the regions
close to the horizontal corners display curvatures
larger than required to turn around the corner. Recall
that the fiuid enters the constant wall temperature legs
at these regions and large temperature gradients are
generated therein. When the tilt angle is 150° (Fig.
5(b)), two small recirculating regions develop in these

FiG. 5. Stream function fields for Ra = 4 x 10%. (a) y = 120°;¥,, = 0.0, ¥y, = 1.3.(b) y = 150°; ¥, = —0.1

Wm =0.2.(c) y = 170°; ¥,y = —0.15, ¥y, = 0.15. (d) y = 175°; ¥,, = —0.14, ¥, = 0.14.
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corners. At y = 170° (Fig. 5(c)) recirculating regions
are formed at the four corners; those at the upper-
and lowermost corners circulate in the same direction
as the global cell while the other two circulate in the
opposite direction. For y = 175° (Fig. 5(d)) the four
cells are nearly symmetric and the global cell has prac-
tically disappeared. The local cells grow stronger and
larger and the global cell weakens as the tilt angle
approaches y = 180°.

3.2. Multiple solutions

The flow inside the loop can be characterized by
specifying the value of the stream function ¥ at the
inner wall and assuming a value of ¥ = 0 at the outer
wall. For fixed 4, ¥ at the inner wall is proportional
to the mean global flow. Also, positive (negative)
values of W indicate counter-clockwise (clockwise)
global rotation. Using a similar method as discussed

by Moya et al. [14] the map of possible solutions as
functions of the tilt angle, shown in Fig. 6, was found,
where velocity versus tilt angle plots resemble S-
shaped curves and are cross-sections of a cusp catas-
trophe. Results were obtained for Ra = 10°, 4x 10}
and 8 x 10*, Two solutions are present in the region
near zero tilt angle. Following other studies (see for
instance refs. {10, 14]), we shall call ‘natural’ flows
those located in the first and third quadrants, since
the fluid moves upwards in the hot temperature leg
and downwards in the cold temperature one; flows
in the second and fourth quadrants are called ‘anti-
natural’.

The critical angles where the system flowing in one
direction switches to the other are —41°, —38° and
—29° for Ra = 103, 4x 10° and 8 x 10°, respectively.
This result is in qualitative agreement with exper-
imental observations in a square loop with circular
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FIG. 6. Stream function at the inner wall as a function of the tilt angle.

cross-section [10] insofar that the larger the heat trans-
ferred by the system, the smaller the critical tilt angle.
The flow patterns at near-critical tilt angles are shown
in Figs. 7(a) and (b) for Ra = 4x10. Local re-
circulating regions appear close to the corners aligned
with the horizontal axis when the flow is anti-natural ;
the flow in these regions becomes stronger as the tilt
angle approaches its critical value. The circulation in
the local cells is ‘natural’ in the sense that fluid moves
upwards near the hot wall and downwards near the
cold wall. These regions contribute to minimize the
buoyant effect driving the anti-natural motion since
the flow of the left-hand corner recirculation cell con-
veys heat from the hot wall to the cold fluid before it
actually enters into the hot leg. Heat is removed from
the fluid in the global cell at the right-hand corner
before it enters into the cold leg. The formation of
local cells also has the effect of reducing the area
available for the global circulation. The fact that the
critical tilt angle is smaller for larger Rayleigh num-
bers can be qualitatively explained in terms of the
presence of local recirculations, as they are stronger
for larger Rayleigh numbers. This effect can be
observed by comparing Figs. 7(a) and 8, showing the
streamlines for anti-natural flow near the critical tilt
angle for R = 4 x 10° and 8 x 10, respectively.

The change in the direction of circulation has been
interpreted using one-dimensional theories in terms
of the catastrophe theory [11]. The set of steady-state
values of the velocity can form a cusp catastrophe in

the parameter space and not two but three velocities
are found in the vicinity of the zero-tilt region. It is
clear that only two out of the three velocities are stable
and therefore the third one cannot be experimentally
or numerically found. In the present two-dimensional
model it is difficult to demonstrate that steady-state
velocities form a two-dimensional manifold dis-
playing a cusp catastrophe in the parameter space;
however, it is clear that the qualitative features are
similar to those found in one-dimensional systems and
therefore a similar kind of model will be appropriate
to describe the phenomenon.

3.3. Heat transfer

The behavior of the loop as a ‘heat-pump’ can be
assessed from Figs. 9 and 10 where the local Nusselt
number at the outer hot wall is plotted as a function
of position for the three cases presented in Figs. 2-4.
Local Nusselt number profiles for the cases where a
global cell is present display a maximum near the
upstream corner of the wall where the cold fluid meets
the hot wall. This maximum is never further away
from the upstream corner than a distance equal to
the gap; the minimum of the local Nusselt number is
always located in the downstream corner where the
fluid has almost reached thermal equilibrium with
the wall (see Fig. 9). The local cells that appear in the
¥ = 180° case reduce the local Nusselt number at the
corners, since they move hot fluid from the internal
hot wall towards the external one. The total heat
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F1G. 7. Stream function for Ra = 4x 10° near the critical angle. (a) y = —38°; anti-natural flow.
(b) y = —39°; natural flow.

transferred by the system is hardly any different than
that obtained with pure conduction, as it can be seen
from Fig. 10. The Nusselt numbers for y = 180° are
more than one order of magnitude smaller than those
for y = 0° or 90°, showing the very important role of
the global convective cell on the total heat transferred.

4. DISCUSSION AND CONCLUSIONS

Some features of the two-dimensional flow of a
natural convective loop have been studied. Flows with

either a single global cell or with a number of local
cells have been found by varying the tilt angles. The
recirculating regions appearing in the y = 0° case orig-
inate from effects similar to those described by Lavine
et al. [8] for small tilt angles. In addition, the absence
of recirculating regions for y = 90° is common to the
square and toroidal loops. Unfortunately, there are no
results for a toroidal loop with y = 180° but it is likely
that local cells would form, at least in ‘fat’ loops. It can
be reasonably expected that four cells would form,
each of them extending to one-quarter of the loop.
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FiG. 8. Stream lines for Ra = 8 % 10° near the critical angle; y = —29°, anti-natural flow. ¥, = —~1.6,
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Fi6. 9. Local Nusselt number at the external hot wall as a function of position for Re =4 x 10*and y = 0°
—)and y = 90° (@—@).

The existence of multiple solutions in a two-dimen-
sional loop has been demonstrated using a model
where no empirical information is required. The
steady-state mass flow rate seems to form a cusp catas-
trophe in the tilt angle-Rayleigh number space in
a similar way to that described by one-dimensional
theory. In the case of the two-dimensional model, the
fact that the ‘anti-natural’ solution changes into the
‘natural’ solution seems to be due to the presence of
the focal recirculations ; however, the qualitative form
of the Ra—y map is remarkably similar to its one-

dimensional counterpart, indicating that the mech-
anism controlling the stability is not contained only
in the two-dimensional, local recirculation effects.
Recirculating flows were found under three differ-
ent conditions : (a) horizontal heating on the top, (b)
horizontal heating on the bottom, and (c) near the
critical tilt angle. Their presence is due to local heating
conditions. Two different convective pattern changes
were identified as functions of the tilt angle. As the
system is tilted from 90° to 180°, the pattern evolves
smoothly from the one global cell to four local con-
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F1G. 10. (—) Local Nusselt number at the external hot wall as a function of position for Ra = 4 x 10*
and y = 180°. (@—@) Local Nusselt number for pure conduction.

vective cells. However, when the system is tilted from
anti-natural to natural flow past the critical angle, the
pattern changes abruptly from one main global cell
with recirculation regions into a single cell rotating in
the opposite direction. It is striking that the large
differences in the flow patterns shown in Figs. 7(a)
and (b) are produced by a change of only one degree
of inclination.

The natural extension of the present study is the
analysis of the time evolution of the flow. According
to one-dimensional theory, the flow may evolve to
acquire a constant steady-state velocity or aperiodic
oscillations. This analysis is presently in progress.
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CONVECTION NATURELLE DANS UNE BOUCLE CARREE BIDIMENSIONNELLE

Résumé—On étudie la convection naturelle permanente dans une boucle bidimensionnelle carrée. Les
montants opposés de la boucle sont maintenus a des températures uniformes différentes ce qui induit un
mouvement du fluide du a la pesanteur ; I'cffet de la viscosité est de s’opposer au mouvement et on atteint
un régime permanent. La géométrie de la boucle est fixée mais on considére plusicurs différences de
température. On analyse aussi I'effet de I'angle d'inclinaison sur les configurations d’écoulement. Des
mouvements locaux de recirculation apparaissent lorsque les parois supérieures sont & des températures
plus élevées que les parois inférieures. Par contre, une cellule globale unique apparait quand la boucle est
inclinée. Des solutions doubles ont été trouvées pour des angles d’inclinaison proche de zéro (température
élevée aux parois inférieures) ; la taille de intervalle d’angle d’inclinaison, quand les solutions doubles
existent, a été déterminée en fonction du nombre de Rayleigh. Des modéles monodimensionnels ont donné
des solutions permanentes multiples dans des systémes semblables i celui étudié ici; on démontre, dans
cette étude, I'existance des solutions multiples dans un modéle bidimensionnel.

NATURLICHE KONVEKTION IN EINER ZWEIDIMENSIONALEN QUADRATISCHEN
SCHLEIFENANORDNUNG

Zusammenfassung—In dieser Arbeit wird die stationire natiirliche Konvektionsstromung in einer zwei-
dimensionalen quadratischen Schicifenanordnung untersucht. Gegeniiberliegende Teile dieser Schleife
werden auf konstanter, aber unterschiedlicher Temperatur gehalten, was in Anwesenheit eines Schwere-
feldes eine Fluidbewegung sicherstellt. Die Bewegung wird durch Reibungskriifte begrenzt, wodurch sich
eine stationdre Strdmung einstellt. Es wird mit konstant gehaltender Geometrie der Schieifenanordnung
gearbeitet, die Temperaturdifferenz ist jedoch unterschiedlich. AuBerdem wird der EinfluB des Neigungs-
winkels auf die Strémungsformen untersucht. Wenn die oberen Wiinde eine hohere Temperatur aufweisen
als die unteren, kommt es regelmiBig zu lokalen Riickstrdmungen. Falls die Schieifenanordnung geneigt
ist, tritt cine einzelne globale Zelle in Erscheinung. Es ergeben sich Zweifachldsungen fiir Neigungs-
winkel nahe 0 (hohe Temperatur an den unteren Winden). Der Bereich der Neigungswinkel mit Dop-
pellosungen wurde in Abhingigheit von der Rayleigh-Zahl ermittelt. Eindimensionale Modelle haben
bereits frither mehrfache stationdre Losungen in Systemen dhnlich den hier untersuchten erbracht. In der
vorliegenden Arbeit wird die Existenz von Mehrfachldsungen in einem zweidimensionalen Modell gezeigt.

ECTECTBEHHASA KOHBEKIIUA B KAHAJIE KBAIPATHOI'O CEMEHHA

Amsoramss—H3/1araloTCE PEIYNLTATM KCCAGAOBAHRN CTALMOHAPHOH ecTecTIeHHOM XOHBEXINN B IABY-
MECPHOM KaHANE KBADATEOrO cewernma. Ha DpOTHPONONOXHMX CTEHEAX EAHAAA NOANCPXMBRIOTCA NOC-
TOSHEME TeMDepATYPs! padnmmolt semvimmni. IloaTomy non neficTBuEM CHIB TREKOCTH XHAXOCTH
OpRXOAHT B OBEXCHEE, KOTOpoc Gnaromaps smxocrusiM 3dexTaM B KOHEYHOM CYCTC CTRHOBNTCK

(npa suicoxoll TemnepaType HEXKHEX CTeHOK) obmapyxesn nsolimue pememus. Oupenencna 3amach-

MOCTS ARANS3OH2 3HA%CHEIl YI/Ia HAXNOHS, LIS KOTOPOIO CYIECTBYCT ABORHOC pemneHNe, OT THCIA

Paex. C Bcnomm3oBaHmeM OAHOMCPMMX Momenell NoMyweHH! XPATHMC CTRUHOBADHME PCIICKAN NS

CHCTEM, aHANOTHIHMX M3ywenuOl B namnolt paGore. Iloxa’ano HANEYHE KDATHAMX petnenuit B AByMep-
HolMt MoseN],



