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&tract-The preseat investigation deafs with the steady-state natural convective flow inside a two- 
dimensional square loop. Opposite Icgs of the loop are held at constant but different temperatures and 
thercforc, due to the presence of gravity, fluid motion ensues ; viscous effects resist the motion and a stcady- 
state flow is reached. The geometry of the loop is fixed but several temperature differences have been 
cons&red. Also, the effect of the tilt angle on the flow patterns has been analyzed. Local recirculating 
motions are the dominant features of the Row when the upper walls are at higher tcmpcraturc than the 
lower ones. In contrast, a sin@ global ccl1 appears when the loop is tilted. Double solutions have been 
found for tilt a&s &se to zero (high temperature at the bottom walls) ; the size of the tilt angle interval 
where double soh~tions exist has been determined as a function of the Raykigh number. Onedimensionai 
modeIs have predkted mukiple steady-state soIutions in systems similar to the one studied here; in the 

present paper, the existence of multiple solutions in a two~irnen~o~l model has been demonstrated. 

1. INTRODUkTIDN 

NATURAL CONVECTIVE loops have been the subject of 
study of numerous investigations both from the basic 
and applied science viewpoints. A review which 
emphasizes the heat transfer properties of these sys- 
tems and describes their various applications has been 
published by Mertdl and Greif [I]. Although the pic- 
ture of the qualitative behavior of the flow in such 
systems has been slowly emerging, the full description 
is far from being available at present. One of the 
pioneering studies on the subject that unraveled 
the complexity of the phenomenon is the work of 
Creveting et al. [2], who used a thin toroidal loop 
of tubing filied with water to observe its dynamic 
behavior. The lower half of the loop was electrically 
heated and the wall temperature of the upper half 
was maintained at a constant value. They observed 
fiows with constant velocity circulating clockwise or 
counterclockwise for the same external conditions ; 
using higher heating rates, they found dews featuring 
aperiodic oscillations. 

~edim~~on~ theoretical models presently 
availabk (see for instance ref. [3], [4] or [5]), identify 
the constant velocity fiows with stable critical points 
in the phase space of a dynamic system describing 
the flow. Oscillations appear when the critical points 
become unstable. Most theoretical models are one- 
dimensional and some physical effects are incor- 
porated through empirical expressions. In particular, 
viscous effects are taken into account by assuming the 
existence of a sink linearly proportional to the velocity 
in the momentum balance equation. These theoretical 

interpretations have succeeded in describing some of 
the qualitative features of the phenomenon, but it is 
not clear to what extent the results depend on the 
particular choice of the empirical information incor- 
porated which is, in some instances, a crude model 
of reality. Also, no quantitative info~ation can be 
obtained from the one-dimensional models for exper- 
imental verification due to the empirical information 
involved. By definition, no two- or three-dimensional 
effects can be studied and consequently some 
characteristics of the flow are not modeled. This omis- 
sion is not expected to be very important when the 
characteristic length of the loop is large compared 
with the cross-section of the tubing forming the loop. 
However, in ‘fat’ loops, two- or ~~dime~ional 
effects can be of prime importance. Two-dimensional 
numerical models have been used to study the flow in 
a toroidal thermosyphon [6, r] ; no empirical infor- 
mation was required in order to account for the vis- 
cous resistance or the heat transfer at the walls, as the 
friction factor and the Nusselt number were obtained 
as part of the sotution. The theoretical ma5s flow rate 
obtained as a function of the heat input with the two- 
dimensional model was compared favorably in the 
laminar steady-state regime with the experimental 
results of ref. [2]. A three-dimensional numerical 
model for a toroidal loop was proposed in ref. [S] ; 
flow reversals and secondary flows were reported. 
These features were observed experimentally by 
Dame&l and Schocnhals [9] but no formal com- 
parison of theoretical and experimental results is 
available as yet. Moreover, some genera1 charac- 
teristics of the flow still remain to be clarified. For 

917 



918 

I 

E. R.mos et al. 

d 

9 
H 
Nu 

P 
Pr 
Ra 
T 

dimensional duct width 
gravitational acceleration 
length of the outer wall of the loop 
Nusseh number 
dimensionless pressure, pv’p’/H’ 
Prandtl number, v/a 
Rayieigh number, g~A~d’/v~ 
dimensionl~s temperature, 
(T’- I-c)/(T,- ?&) 
dimensionless velocity in the 
.x-direction, u’H/v 
dimensionless velocity in the 
Y-direction, v’H/v 
dimensionless spatial coordinate, 
x’/H 
~rne~ionl~ spatial coordinate, 
Y/H* 

Greek symbols 
thermal diffusivity 

i thermal expansion coefficient 

i 
tilt angle 
non-dimensional duct width, d/H 

V kinematic viscosity 
Y dimensionless stream function, ‘V/v. 

Subscripts 
0 reference value 
C cold temperature 
H hot temperature 
M maximum value 
m minimum value. 

superscript 
dime~onal variables. 

instance, it is well known from onedimensional 
models that the system displays multiple solutions (10, 
111. Also, aperiodic oscillations in loops have been 
analyzed with onedimensional models in the context 
of dynamical systems theory and their structures in 
the phase-space have been associated with strange 
attractors. A general multidimensional theory 
addressing these points where no empirical infor- 
mation is involved has not been presented to date. 

In this paper we analyze the steady-state flow in a 
square two-dimensional thermosyphon with particu- 
lar emphasis on the existence of multiple solutions in 
order to generalize the steady-state, onedime~ional 
theory. 

2. MATHEMATXAL MODEL 

Consider a twodimensional square duct filled with 
a fluid, and tilted at an angle y with respect to the 
horizontal as shown in Fig. 1. The wall temperatures 
of two opposite legs are held at consent but Merent 
temperatures Tc and T;I while the other two legs are 
thermally insulated. The length of the external wall of 
the legs is denoted by Hand the duct width by d. The 
fluid moves inside the loop due to the buoyancy force 
generated by the density gradients. The working fluid 
is Newtonian and incompressible; viscous dissipation 
is neglected in the energy equation and it is assumed 
that the Boussinesq apposition is applicable. 

Under steady-state conditions and referred to the 
tilted axes, the governing equations written in terms 
of the nondimensional variables defined in the 
nomenclature are : 

mass balance 

du do 
$,li;=O; 

momentum balance 

x-direction 

8~ a2u d2u Ru u;+a% _-+_+__ 
ay ax 3x1 ay* iFPin 

Y-direction 

au au ap as a5 ~a 
u~+v~=-;T;+ax’+~-pjq T-Y; 

energy balance 

where u and v are the velocities in the x- and y- 
directions respectively, p is the pressure and T the 
temperature. The nondimensional parameters that 
govern the flow are the Rayleigh number Ru, the 
Prandtl number Pr, the non~~sion~ gap t5 and 
the tilt angle y. 

The boundary conditions are : 

u=v = 0 at the solid boundaries; 

T=l for O,<xgl, y=O 

and (s*;x<l-6, ~“6; 

T-O for Ogx<l, Y”““l 

and 6<x<l-6, y”I-4; 

dT 
ax==0 for O<YYl, x-o 

S<ySl-6, x=6 

OdY< 1, x=1 

and b<y<l-6, x=1-5. 
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PIG. 1. The twe-dimensionsl square thermosyphon. 

For future reference, we shall define the locaf Nusseh 
number as 

d ar aaT Nu(x)------ - 
T;, - rc ay’ ay 

which is obviously a function of the position. Due to 
the geometry of the probkm, four Nusselt numbers 
can be defined, one at each wall at constant tern- 
pcratun. 

The numerical solution of the system was obtained 
using a method similar to the SIMPLE algorithm 
developed by Patankar and Spalding [12], which is 
embodied in the PHOENICS code of Spalding 1131. 
The system of equations is solved using a primitive, 
diagonal-v~ab~ fo~ulation. The nondiien- 
sional fo~ulation adopted here is favored in order 
to simplify the generalization of results. 

A uniform grid with 30 x 30 control volumes in the 
x- and ydirections was used to obtain all the results 
presented in this paper. The central volumes of the 
square are blocked ; a solution is considered to be 
correct when it has converged and is grid independent. 
The convergence is attained when the overall sum 
of the residuals in the mass, rn~t~ and energy 
equations is less than 0.1% of the total corresponding 
quantity contained in the integration domain, and the 
heat balance due to soumes and sinks, including the 
boundaries, is better than 1%. The grid-independent 
solution is established by comparing the velocity and 
temperature fields for two converged solutions 
obtained with different grid spacing. It must be 
stressed that different grid sizes may require a different 

number of sweeps to converge. This is also true for 
different tilt angles. A grid-independence study was 
carried out and the results obtained with an equally- 
spaced 60 x 60 volume grid were found to be in quali- 
tative agreement with those presented here; small 
quantitative differences (never larger than 15%) were 
found. Due to the much longer time required to run 
the program, it was decided to use the 30 x 30 grid. 
The number of sweeps and the CPU time required to 
End the solution in an HP-9000 series 500 computer 
with a UNIX 5.05 operative system are given in 
Table 1. 

3. RESULTS 

Results were obtained for titt angles ranging from 
- 180” to 180’ and from Ra = IO3 to 8 x 103. The 
Prandtl number was fixed at Pr = 5.5 and the gap 
width 6 was qua1 to 0.2 in all cases. 

The stream function and temperature fields for 
Ru = 4 x lo3 and y = 0”, 90” and 180” are shown in 

Table 1. Numerical data for solutions using an HP-9000 
series 500 computer 

Tilt angle 
Y 

Number of 
SW-m 

Proce5sing 
time (s) 

0” 200 1964 
90” 60 632 

180” 420 4696 
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Figs. 2-4. For p = 0” (Fig. 2(a)) the fluid moves around The fluid inside the vertical, thermally insulated legs is 
the loop in a counter-clockwise direction except for almost isothermal while strong temperature gradients 
two small recirculating regions near the lower-left and are present in the sections corresponding to the con; 
upper-right corners where the fluid moves in a clock- stant wall temperature legs ; the steepest gradient is 
wise direction. The global cell modifies dramatically located at the horizontal, lower-left and upper-right 
the temperature field inside the loop from that comers where the fluid enters the hot- and cold-wall 
obtained in the pure conductive case; the isotherms temoerature regions respectively. ‘Ihe origin of the 
are swept away by the motion of the fluid (Fig. 2(b)). r~i~ulation regions is in fact due to geometrical 

W 

1 

FlG. 2. (a) Stream function and fb) temperature fields for Ru = 4 x 10’ and 7 = O- ; Y,,, = -0.19, YM = 6.5. 
(c) Pressure field and (d) center-line pressure for Ru = 4 x IO5 and d = 0”. 
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FIG. 2-continued. 

effects; the fluid tends to remain almost stagnant near The largest local recirculation region is formed in 
the comers, and it is there that horizontal temperature the lower-left comer where the generated horizontal 
gradients are generated due to the global motion. temperature gradients are greatest. The.pressure field 
Therefore, adequate conditions are given locally to and the pressure along the center-line of the duct is 
form convective cells. Notice, however, that in the shown in Figs. 2(c) and (d), respectively. The reference 
lower-right and upper-left comers the temperature pressurep = 0 is taken at the uppermost left-hand side 
gradients tend to generate cells,of fluid rotating in the comer, with the overall pressure gradient generating a 
counter-clockwise! direction; this motion is opposed counter-clockwise motion. The flow in the 7 = 90” 
by the global cell motion which is far stronger. In case, shown in Fig. 3(a), is similar to the one just 
contrast, the global cell motion tends to reinforce the described, since a single global cell of fluid circulating 
local motion in the lower-left and upper-right comers. in the counter-clockwise direction is formed. The iso- 
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FIG. 3. (a) Stream function and (b) temperature fields for Ra = 4 x IO6 and 7 = 90” ; Y, - 0.0, YM - 3.5. 

therms also display similar features, but in the present eration of local cells since only small horizontal tcm- 
case large temperature gradients are formed in the perature gradients are formed at the lower-left and 
vertical, constant wall temperature legs, while the flow upper-right comers. The stream function and tem- 
in the horizontal legs is nearly isothermal. This tem- perature fields for y = 180” are shown in Fig. 4. The 
perature field configuration does not favor the gen- fluid remains practically motionless in the straight 
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FIG. 4. (a) Stream function and (b) temperature fields for Ra = 4x 10’ and y = 180’; Y’, = -0.14. 
Y M = 0.14. 

parts of the loop, but four local convection cells are opposite direction. In the upper horizontal leg, the 
formed near the comers. The temperature field is very fluid ascends near the center where the hottest region 
similar to that of pure conduction, convection playing of the loop is located and descends near the corners. 
only a minor role except near the inner comers where This pattern is reversed in the lower horizontal leg 
the flow attains its maximum velocity. Two cells circu- where the coldest region is located near its center. 
late clockwise while the other two circulate in the Heat is transferred from the hot boundaries of the 
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loop to the cold ones purely by conduction. The pres- local cells as the tilt angle goes from 90” to 180“ for 
ence of the cells can easily be explained since, locally, Ra = 4 x 10) is shown in Fig. 5 (the stream flow lines 
the external heating is not uniform and therefore hori- for y = 90” and 180” are shown in Figs. 3(a) and 4(a), 
zontal temperature gradients are present which trigger respectively). The pattern changes are smooth. At 
the motion. The local motions found in this case are y = 120”. the stagnant regions at the upper- and lower- 
similar to the recirculating flows observed in the y = 0” 
case in the sense that they are driven by local non- 

most comers grow and the streamlines in the regions 
close to the horizontal comers display curvatures 

homogeneous heating. In the present case, however, larger than required to turn around the comer. Recall 
the global motion of the fluid does not influence the 
formation of recirculating patterns as these appear 

that the fluid enters the constant wall temperature legs 

when the global circulation of the fluid is absent. 
at these regions and large temperature gradiits are 

The transition from a single global cell to multiple 
generated therein. When the tilt angle is 150” (Fig. 

5(b)), two small recirculating regions develop in these 

F1~.5.St~amfunctionfi~ldsforRa-4~10~.(a)y- 120°;Y’,=0.0,Yy,= 1.3.(b)y= lSO”;Y,= -0.1, 
Y,., = 0.2. (c)y = 170”; Y’, = -0.15. YM = 0.15. (d) y = 175”; Y,,, = -0.14, Y,+, = 0.14. 
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FIG. S-continued. 

comers. At y = 170” (Fig. 5(c)) recirculating regions 
are formed at the four comers; those at the upper- 
and lowermost comers circulate in the same direction 
as the global cell while the other two circulate in the 
opposite direction. For y = 175” (Fig. 5(d)) the four 
cells are nearly symmetric and the global cell has prac- 
tically disappeared. The local cells grow stronger and 
larger and the global cell weakens as the tilt angle 
approaches y = 180”. 

3.2. Multiple solutions 
The flow inside the loop can be characterized by 

specifying the value of the stream function Y at the 
inner wall and assuming a value of Y = 0 at the outer 
wall. For fixed S, Y at the inner wall is proportional 
to the mean global flow. Also, positive (negative) 
values of Y indicate counter-clockwise (clockwise) 
global rotation. Using a similar method as discussed 

by Moya et al. [14] the map of possible solutions as 
functions of the tilt angle, shown in Fig. 6, was found, 
where velocity versus tilt angle plots resemble S- 
shaped curves and are cross-sections of a cusp catas- 
trophe. Results were obtained for Ra = lo’, 4x lo3 
and 8 x lo-‘. Two solutions are present in the region 
near zero tilt angle. Following other studies (see for 
instance refs. (10, 14]), we shall call ‘natural’ flows 
those located in the first and third quadrants, since 
the fluid moves upwards in the hot temperature leg 
and downwards in the cold temperature one ; flows 
in the second and fourth quadrants are called ‘anti- 
natural’. 

The critical angles where the system flowing in one 
direction switches to the other are -41”. -38” and 
-29” for Ra = 10’. 4 x lo3 and 8 x 103, respectively. 
This result is in qualitative agreement with exper- 
imental observations in a square loop with circular 
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3 

FIG. 6. Stream function at the inner wall as a function of the tilt angle. 

cross-section [lo] insofar that the larger the heat trans- 
ferred by the system, the smaller the critical tilt angle. 
The flow patterns at near-critical tilt angles are shown 
in Figs. 7(a) and (b) for Ra - 4 x 103. Local re- 
circulating regions appear close to the corners aligned 
with the horizontal axis when the flow is anti-natural ; 
the flow in these regions becomes stronger as the tilt 
angle approaches its critical value. The circulation in 
the local cells is ‘natural’ in the sense that fluid moves 
upwards near the hot wall and downwards near the 
cold wall. These regions contribute to minimixe the 
buoyant effect driving the anti-natural motion since 
the flow of the left-hand corner recirculation cell con- 
veys heat from the hot wall to the cold tluid before it 
actually enters into the hot leg. Heat is removed from 
the fluid in the global cell at the right-hand comer 
before it enters into the cold leg. The formation of 
local cells also has the effect of reducing the area 
available for the global circulation. The fact that the 
critical tilt angle is smaller for larger Rayleigh num- 
bers can be qualitatively explained in terms of the 
presence of local recirculations, as they are stronger 
for larger Raykigh numbers. This effect can be 
observed by comparing Figs. 7(a) and 8, showing the 
streamlines for anti-natural flow near the critical tilt 
angle for R = 4 x 10” and 8 x 103, respectively. 

The change in the direction of circulation has been 
interpreted using one-dimensional theories in terms 
of the catastrophe theory [ 111. The set of steady-state 
values of the velocity can form a cusp catastrophe in 

the parameter space and not two but three velocities 
are found in the vicinity of the zero-tilt region. It is 
clear that only two out of the three velccities are stable 
and therefore the third one cannot be experimentally 
or numerically found. In the present two-dimensional 
model it is difiicult to demonstrate that steady-state 
velocities form a twodimensional manifold dis- 
playing a cusp catastrophe in the parameter space; 
however, it is clear that the qualitative features are 
similar to those found in one-dimensional systems and 
therefore a similar kind of model will be appropriate 
to describe the phenomenon. 

3.3. Heat tramfer 
The behavior of the loop as a ‘heat-pump’ can be 

assessed from Figs. 9 and 10 where the local Nusselt 
number at the outer hot wall is plotted as a function 
of position for the three cases presented in Figs. 2-4. 
Local Nusselt number profiles for the cases where a 
global cell is present display a maximum near the 
upstream corner of the wall where the cold fluid meets 
the hot wall. This maximum is never further away 
from the upstream comer than a distance equal to 
the gap ; the minimum of the local Nusselt number is 
always located in the downstream comer where the 
fluid has almost reached thermal equilibrium with 
the wall (see Fig. 9). The local cells that appear in the 
y = 180” case reduce the local Nusselt number at the 
comers, since they move hot fluid from the internal 
hot wall towards the external one. The total heat 
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FIG. 7. Stream function for Ra = 4x 10’ near the critical angle. (a) y = -38”; anti-natural flow. 
(WY== - 39” ; natural flow. 

transferred by the system is hardly any different than 
that obtained with pure conduction, as it can be seen 
from Fig. IO. The Nusselt numbers for y = 180” are 
more than one order of magnitude smaller than those 
for y = 0” or 90”, showing the very important role of 
the global convective cell on the total heat transferred. 

4. DISCUSSION AND CONCLUSIONS 

Some features of the two-dimensional flow of a 
natural convective loop have been studied. Flows with 

either a single global cell or with a number of local 
cells have been found by varying the tilt angles. The 
recirculating regions appearing in they = 0” case orig- 
inate from effects similar to those described by Lavine 
et al. [S] for small tilt angles. In addition, the absence 
of recirculating regions for y = 90” is common to the 
square and toroidal loops. Unfortunately, there are no 
results for a toroidal loop with y = 180” but it is likely 
that local cells would form, at least in ‘fat’ loops. It can 
be reasonably expected that four cells would form, 
each of them extending to onequarter of the loop. 
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FIG. 8. Stream lines for Ru = 8 x IO3 near the critic4 angle; 7 = -29”, anti-natural flow. Y,,, = - 1.6, 
Y&j = 5.1. 

FIG, 9. Local Nusselt number at the external hot wall as a function of position for Rn = 4 x IO3 and y = 0” 
(----1 and y = 90” (a--@). 

The existence of multiple solutions in a twodimen- 
sionai loop has been demonstrated using a modei 
where no empirical info~ation is required. The 
steady-state mass flow rate seems to form a cusp catas- 
trophe in the tilt angle_Rayleigh number space in 
a similar way to that described by one~ime~io~ 
theory. In the case of the tw~ime~iona~ mode& the 
fact that the ‘anti-~tu~~ ~lutio~ changes into the 
‘natural’ solution seems to be due to the presence of 
the IocaI recireuLtions; however, the qualitative form 
of the &r-y map is remarkably similar to its one- 

dimensional counterpart, imputing that the mech- 
amsm controhing the scanty is not contained only 
in the twodi~ns~o~ local recirculation effects. 

Recirculating flows were found nnder three differ- 
ent conditions: (a) horizontal heating on the top, (b) 
horizontal heating on the bottom, and (c) near the 
critical tilt angle. Their presence is due to Iocal heating 
condjtions. Two different involve pattern changes 
were identified as functions of the tilt angle. As the 
system is tilted from 90” to 180”, the pattern evolves 
smoothly from the one global cell to four local con- 
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FIG. 10. (- ) Local Nusselt number at the external hot wall as a function of position for Ra = 4 x IO’ 
and y = 180”. (0-O) Local Nusselt number for pure conduction. 
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vective cells. However, when the system is tilted from 
anti-natural to natural flow past the critical angle, the 
pattern changes abruptly from one main global cell 
with recirculation regions into a single cell rotating in 
the opposite direction. It is striking that the large 
differences in the flow patterns shown in Figs. 7(a) 
and (b) are produced by a change of only one degree 
of inclination. 

The natural extension of the present study is the 
analysis of the time evolution of the flow. According 
to one-dimensional theory, the flow may evolve to 
acquire a constant steady-state velocity or aperiodic 
oscillations. This analysis is presently in progress. 
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CONVECTION NATURELLE DANS UNE BOUCLE CARREE BIDIMENSIONNELLE 

Rbomc-On Ctudie la convection aaturelle perataaeate daas uae boucle bidimeasionaeUe car&e. Les 
moataats opposes de la boucle sont ataiateaus I des temperatures uniformes diB&eates a qui iaduit ua 
mouvemeat du guide du ri la pesnateur ; I’effet de la viscositi est de s’opposer au mouvement et oa atteiat 
ua r&hae permanent. La &m&e de la boucle est R&e mais on consid& plusieurs di%reaces de 
teatperature. On aaalyse aussi I’efTet de I’angle d’incliaaisoa sue les con6guratioas d%co&ateat. Des 
mouvemeats locaux de recirculation apparaisseat lorsque les parois supCrieures sont H des tea@atures 
plus ilevics que les parois ia&ieures. Par coatre, une celhde globale unique apparait quand la boucle est 
iacliak. Des solutioas doubles ont CtC trot&es pour des angles d’iachaaisoa proche de z&o (teatp&rature 
&levee aux parois iafirieures); la taille de I’iatervalle dangle d’inclinaison, quaad les solutions doubles 
existent, a Cti deterariab en fonctioa du aombre de Rayleigh. Des mod&s moaodimeasionnels ont doaai 
des solutions pennaaentes multiples daas des systtmes semblables P celui CtudiC ici; on deatoatre. daas 

cette etude, I’existance des solutions multiples dans ua modele bidimensioaael. 

NATURLICHE KONVEKTION IN EINER ZWEIDIMENSIONALEN QUADRATISCHEN 
SCHLEIFENANORDNUNG 

Zrwam4aanng-In dieser Arbeit wird die statioaiire aattirliche Koavektioasstriimuag in eiaer zwei- 
dimensioaalea quadratischea SchMfeaaaordauag uatersucht. Gegeaiiberliegeade Teile dieser Schleife 
werden auf koastaater, aber uaterschiedlicher Temperatur gehaltea, was in Anweseaheit eiaes Schwere- 
feldes eine Fhtidbeweguag sichersteIlt. Die Bewegung wird durch ReibungsktiRe begmazt. wodurch sich 
eine statioaiire Str6mung eiasteIIt. Es wird mit koastaat gehalteader Geometric der~SchMfenaaordatmg 
gearbeitet, die Temperaturdiffereaz ist jodoch uaterschiedlich. AuBerdrm wird der EiafIuB des Nehmaas- 
bnkeh auf die Str6mungsformea uate&rcht. Wemt die oberen W5nde eiae h&m Temperatur at&&t 
als die unteren, koatmt es regehagBig N IokaIea RCLdatimtmgea. Falls dii Schleifenanordauag geaeigt 
ist, tritt eine eiazehte globale Zelle in Erscheimmg. Es ergeben sich Zweifachl6suagen IUr Neigtmgs- 
wiakel aahe 0 (hohe Tetnperatur an den unteren Winden). Der Bereich der Neiguagswiakel atit Dop 
pellSsuagea wurde ia Abh5agigheit von der Rayleigh-EnhI ermitteh. Eindimeatioaale Mod& habea 
bereits frtiher mehrfache station& Lbstmgen ia Systearea Hhnlich den hier tmtersuchtea erbracht. In der 
voriiegeaden Arbeit wird die Existeaz voa Mehrfachlbsungea in eineat xweidimenrionalea ModeU gezeigt. 


